
A new Kempe invariant and the (non)-ergodicity of the Wang–Swendsen–Kotecký algorithm

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 225204

(http://iopscience.iop.org/1751-8121/42/22/225204)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/22
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 225204 (32pp) doi:10.1088/1751-8113/42/22/225204

A new Kempe invariant and the (non)-ergodicity of the
Wang–Swendsen–Kotecký algorithm
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Abstract
We prove that for the class of three-colorable triangulations of a closed-
oriented surface, the degree of a four-coloring modulo 12 is an invariant
under Kempe changes. We use this general result to prove that for all
triangulations T (3L, 3M) of the torus with 3 � L � M , there are at least
two Kempe equivalence classes. This result implies, in particular, that the
Wang–Swendsen–Kotecký algorithm for the zero-temperature 4-state Potts
antiferromagnet on these triangulations T (3L, 3M) of the torus is not ergodic.

PACS numbers: 02.10.Ox, 02.40.Re, 02.50.Ga, 05.50.+q, 64.50.De

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The q-state Potts model [4, 24, 25] is certainly one of the simplest and most studied models
in statistical mechanics. However, despite many efforts over more than 50 years, its exact
solution (even in two dimensions) is still unknown. The ferromagnetic regime is the best
understood case: there are exact (albeit not always rigorous) results for the location of the
critical temperature, the order of the transition, etc. The antiferromagnetic regime is less
understood, partly because universality is not expected to hold in general (in contrast to the
ferromagnetic regime); in particular, critical behavior may depend on the lattice structure of
the model. One interesting feature of this antiferromagnetic regime is that zero-temperature
phase transition may occur for certain values of q and certain lattices: e.g., the models with
q = 2, 4 on the triangular lattice, and q = 3 on the square and kagomé lattices [18, and
references therein].
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The standard q-state Potts model can be defined on any finite undirected graph G = (V ,E)

with vertex set V and edge set E. On each vertex of the graph i ∈ V , we place a spin
σ(i) ∈ {1, 2, . . . , q}, where q � 2 is an integer. The spins interact via a Hamiltonian

H({σ }) = −J
∑

e=ij∈E

δσ(i),σ (j), (1.1)

where the sum is over all edges e ∈ E, J ∈ R is the coupling constant, and δa,b is the
Kronecker delta. The Boltzmann weight of a configuration is then e−βH , where β � 0 is the
inverse temperature. The partition function is the sum, taken over all configurations, of their
Boltzmann weights:

ZPotts
G (q, βJ ) =

∑
σ :V →{1,2,...,q}

e−βH({σ }). (1.2)

A coupling J is called ferromagnetic if J � 0, as it is then favored for adjacent spins
to take the same value, and antiferromagnetic if −∞ � J � 0, as it is then favored
for adjacent spins to take different values. The zero-temperature (β → +∞) limit of the
antiferromagnetic (J < 0) Potts model has an interpretation as a coloring problem: the limit
limβ.→+∞ ZPotts

G (q,−β|J |) = PG(q) is the chromatic polynomial, which gives the number of
proper q-colorings of G. A proper q-coloring of G is a map σ : V → {1, 2, . . . , q} such that
σ(i) �= σ(j) for all pairs of adjacent vertices ij ∈ E.

For many statistical mechanics systems for which an exact solution is not known, Markov
chain Monte Carlo simulations [2] have become a very valuable tool to extract physical
information. A necessary condition for a Markov chain Monte Carlo algorithm to work is that
it should be ergodic (or irreducible): i.e., the chain can eventually get from each state to every
other state. This condition is usually easy to check at positive temperature, but in many cases,
it becomes a highly non-trivial question at zero temperature in the antiferromagnetic regime.

One popular Monte Carlo algorithm for the antiferromagnetic q-state Potts model is the
Wang–Swendsen–Kotecký (WSK) non-local cluster dynamics [22, 23]. At zero temperature
(where we expect interesting critical phenomena), it leaves invariant the uniform measure over
proper q-colorings, but its ergodicity is a non-trivial question (and not completely understood)4.
It is interesting to note that at zero temperature, the basic moves of the WSK dynamics
correspond to the so-called Kempe changes, introduced by Kempe in his unsuccessful proof
of the four-color theorem. This connection makes this problem interesting from a purely
mathematical point of view.

In this paper, we will address the problem of the ergodicity of the WSK algorithm for
the 4-state Potts antiferromagnet on the triangular lattice. Although the Potts model can be
defined on any graph G, in statistical mechanics one is mainly interested in ‘large’ regular
graphs embedded on the torus (to minimize finite-size effects). Therefore, we will focus on
certain regular triangulations of the torus that we will denoted as T (3L, 3M) (loosely speaking
the triangulation T (3L, 3M) is a subset of a triangular lattice with linear size (3L) × (3M)

and fully periodic boundary conditions. For a more detailed definition, see section 2).
The ergodicity of the WSK algorithm for the q-state antiferromagnetic on the triangular

lattice embedded on a torus is only an open question for q = 4, 5, 6. For q = 2 (the Ising
model) it is trivially non-ergodic, as each WSK move is equivalent to a global spin flip, while
for q = 3 is trivially ergodic, as there is a single allowed three-coloring modulo global color
permutations. In contrast, for q � 7 the algorithm is ergodic (see section 2 for more details).
Among the unknown cases, q = 4 is the most interesting one, because the system is expected
to be critical at zero temperature.
4 WSK dynamics can indeed be defined for positive temperature. In this case, it is easy to show its ergodicity on the
set of all q-colorings of the graph G (i.e., proper and non-proper).
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Proper four-colorings of triangulation of the torus are rather special, as they can be
regarded as maps from a sphere S2 (using the tetrahedral representation of the spin) to an
orientable surface. Therefore, one can borrow concepts from algebraic topology, in particular,
the degree of a four-coloring. This approach (pioneered by Fisk [6–8]) can only deal with
q = 4, and cannot be extended to the other two cases q = 5, 6.

Our first goal is to obtain a quantity that is invariant under a Kempe change (or zero-
temperature WSK move), at least for a class of triangulations that includes all triangulations
of the type T (3L, 3M). We succeeded in proving that, for any three-colorable triangulation
of a closed orientable surface, the degree of a four-coloring modulo 12 is a Kempe invariant.
Because any four-coloring of a closed orientable surface has a degree multiple of six, and any
three-coloring has degree zero, then we conclude that WSK with q = 4 colors is not ergodic on
any three-colorable triangulation of a closed orientable surface which admits a four-coloring
with degree congruent with 6 modulo 12.

The next goal is to prove that, for any triangulation T (3L, 3M) of the torus, such a
four-coloring with degree congruent with 6 modulo 12 exists. We first proved this statement
for any symmetric triangulation T (3L, 3L) with L � 2. Then, we extended this result to
any triangulation of the form T (3L, 3M) with L � 3 and M � L, and those of the form
T (6, 6(2M + 1)) with M � 0. Therefore, we conclude that WSK with q = 4 colors is
generically non-ergodic on the triangulations T (3L, 3M) of the torus.

The paper is organized as follows. In section 2, we introduce our basic definitions, and
review what is known in the literature about the problem of the ergodicity of the Kempe
dynamics. In section 3, we introduce the algebraic topology approach borrowed from Fisk.
This section includes two main results: the proof that the degree modulo 12 is a Kempe
invariant for a wide enough class of triangulations, and a complete proof of Fisk’s theorem [8]
for the class of triangulations T (r, s, t) of the torus. In section 4, we apply the new invariant
to prove that WSK is non-ergodic on any triangulation T (3L, 3L) with L � 2. In section 5,
we extend the latter result to non-symetric triangulations of the torus T (3L, 3M) with L � 3
and M � L (and also to T (6, 6(2M + 1)) with M � 0). Finally, in section 6 we present our
conclusions and discuss prospects of future work.

2. Basic setup

Let G = (V ,E) be a finite undirected graph with vertex set V and edge set E. Then for each
graph G there exists a polynomial PG with integer coefficients such that, for each q ∈ Z+,
the number of proper q-colorings of G is precisely PG(q). This polynomial PG is called
the chromatic polynomial of G. The set of all proper q-colorings of G will be denoted as
Cq = Cq(G) (thus |Cq(G)| = PG(q)).

It is far from obvious that ZPotts
G (q, βJ ) (cf (1.2)), which is defined separately for each

positive integer q, is in fact the restriction to q ∈ Z+ of a polynomial in q. But this is in fact
the case, and indeed we have

Theorem 2.1 (Fortuin–Kasteleyn [9, 13] representation of the Potts model). For every integer
q � 1, we have

ZPotts
G (q, v) =

∑
A⊆E

qk(A)v|A|, (2.1)

where v = eβJ − 1, and k(A) denotes the number of connected components in the spanning
subgraph (V ,A).
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11 22 01 12 21 02 11

01 12 21 02 11 22 01

23 04 13 24 03 14 23

T1 T3 T5 T7 T9 T11

T13 T15 T17 T19 T21 T23

T14 T16 T18 T20 T22 T24

T2 T4 T6 T8 T10 T12

Figure 1. The triangulation T (6, 2, 2) = �2 × ∂�3 of the torus. Each vertex x of T (6, 2, 2) is
labeled by two integers ij , where i (resp. j ) corresponds to the associated vertex in �2 (resp.
∂�3). The vertices of �2 are labeled {0, 1, 2}, while the vertices of ∂�3 are labeled {1, 2, 3, 4}.
The triangulation T (6, 2, 2) has 12 vertices, and those in the figure with the same label should be
identified. We have also labeled the 24 triangular faces Ti in T (6, 2, 2).

The foregoing considerations motivate defining the Tutte polynomial of the graph G:

ZG(q, v) =
∑
A⊆E

qk(A)v|A|, (2.2)

where q and v are commuting indeterminates. This polynomial is equivalent to the standard
Tutte polynomial TG(x, y) after a simple change of variables. If we set v = −1, we obtain the
chromatic polynomial PG(q) = ZG(q,−1). In particular, q and v can be taken as complex
variables. See [20] for a recent survey.

As explained in the introduction, we will focus on regular triangulations embedded on the
torus. The class of regular triangulations of the torus with degree six is characterized by the
following theorem:

Theorem 2.2 (Altschulter [1]). Let T be a triangulation of the torus such that all vertices
have degree six. Then T is one of triangulations T (r, s, t), which are obtained from the
(r + 1) × (s + 1) grid by adding diagonals in the squares of the grid as shown in figure 1,
and then identifying opposite sides to get a triangulation of the torus. In T (r, s, t), the top
and bottom rows have r edges, the left and right sides s edges. The left and right sides are
identified as usual, but the top and the bottom rows are identified after (cyclically) shifting the
top row by t edges to the right.

In figure 1, we have displayed the triangulation T (6, 2, 2) of the torus. We will represent
these triangulations as embedded in a rectangular grid with three kinds of edges: horizontal,
vertical and diagonal.

The three-colorability of the triangulations T (r, s, t) is given by the following result
(whose proof is left to the reader):

Proposition 2.3. The triangulation T (r, s, t) is three-colorable if and only if r ≡ 0 (mod 3)

and s − t ≡ 0 (mod 3).

In Monte Carlo simulations, it is usual to consider toroidal boundary conditions with
no shifting, so t = 0. Then, the three-colorability condition reduces to the standard result
r, s ≡ 0 (mod 3). In general, we will consider the following triangulations of the torus
T (3L, 3M, 0) = T (3L, 3M) with L,M � 1.

The unique three-coloring c0 of T (3L, 3M) can be described as

c0(x, y) = mod(x + y − 2, 3) + 1, 1 � x � 3L, 1 � y � 3M, (2.3)
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where we have explicitly used the above-described embedding of the triangulation T (3L, 3M)

in a square grid.
Finally, in most Monte Carlo simulations one usually considers tori of aspect ratio one:

i.e., T (3L, 3L). This is the class of triangulations we are most interested in from the point of
view of statistical mechanics.

2.1. Kempe changes

Given a graph G = (V ,E) and q ∈ N, we can define the following dynamics on Cq : choose
uniformly at random two distinct colors a, b ∈ {1, 2, . . . , q}, and let Gab be the induced
subgraph of G consisting of vertices x ∈ V for which σ(x) = a or b. Then, independently
for each connected component of Gab, with probability 1

2 either interchange the colors a and
b on it or leave the component unchanged. This dynamics is the zero-temperature limit of the
WSK non-local cluster dynamics [22, 23] for the antiferromagnetic q-state Potts model. This
zero-temperature Markov chain leaves invariant the uniform measure over proper q-colorings,
but its ergodicity cannot be taken for granted.

The basic moves of the WSK dynamics correspond to Kempe changes (or K-changes).
In each K-change, we interchange the colors a, b on a given connected component (or K-
component) of the induced subgraph Gab.

Two q-colorings c1, c2 ∈ Cq(G) related by a series of K-changes are Kempe equivalent

(or Kq-equivalent). This (equivalence) relation is denoted as c1
q∼ c2. The equivalence classes

Cq(G)/
q∼ are called the Kempe classes (or Kq-classes). The number of Kq-classes of G is

denoted by κ(G, q). Then, if κ(G, q) > 1, the zero-temperature WSK dynamics is not ergodic
on G for q colors.

In this paper, we will consider two q-colorings related by a global color permutation to
be the same one. In other words, a q-coloring is actually an equivalence class of standard
q-colorings modulo global color permutations. Thus, the number of (equivalence classes of)
proper q-colorings is given by PG(q)/q!. This convention will simplify the notation in the
sequel.

2.2. The number of Kempe classes

In this section, we will briefly review what it is known in the literature about the number of
Kempe equivalence classes for several families of graphs. The first result implies that WSK
dynamics is ergodic on any bipartite graph5.

Proposition 2.4 (Burton and Henley [3], Ferreira and Sokal [5], Mohar [16]). Let G be a
bipartite graph and q � 2 an integer. Then, κ(G, q) = 1.

It is worth noting that Lubin and Sokal [14] showed that the WSK dynamics with three
colors is not ergodic on any square-lattice grid of size 3M × 3N (with M,N relatively prime)
wrapped on a torus. These graphs are indeed not bipartite.

The second type of results deals with graphs of bounded maximum degree �, and shows
that κ(G, q) = 1 whenever q is large enough.

Proposition 2.5 (Jerrum [12] and Mohar [16]). Let � be the maximum degree of a graph G
and let q � � + 1 be an integer. Then κ(G, q) = 1. If G is connected and contains a vertex
of degree < �, then also κ(G,�) = 1.

5 All the cited authors have discovered this theorem independently.
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This result implies that for any 6-regular triangulation T = T (r, s, t), κ(T , q) = 1 for any
q � �+1 = 7. However, the cases, q = 4, 5, 6, are not covered by the above proposition. The
case, q = 3, is not covered either, but this one is trivial if the triangulation is three-colorable:
the three-coloring is unique and therefore, κ(T , 3) = 1.

Finally, if we consider planar graphs the situation is better understood. Fisk [7] and
Moore and Newman [17] showed that κ(T , 4) = 1 for planar three-colorable triangulations.
Moore and Newman’s goal was to establish a height representation of the corresponding
zero-temperature antiferromagnetic Potts model. One of the authors extended this result as
follows:

Theorem 2.6 (Mohar [16], Theorem 4.4). Let G be a three-colorable planar graph. Then
κ(G, 4) = 1.

Corollary 2.7 (Mohar [16], Corollary 4.5). Let G be a planar graph and q > χ(G). Then
κ(G, q) = 1.

Indeed, none of our graphs T (3L, 3M) is planar. Thus, the above results do not apply
to our case. The main theorem for triangulations appears in [8]. It involves the notion of the
degree of a four-coloring, whose definition is deferred to the following section.

Theorem 2.8 (Fisk [8]). Suppose that T is a triangulation of the sphere, projective plane, or
torus. If T has a three-coloring, then all four-colorings with degree divisible by 12 are Kempe
equivalent.

In section 3.3, we provide a complete self-contained proof of Fisk’s result when restricted
to the 6-regular triangulations of the torus treated in this paper.

3. Four-colorings of triangulations of the torus

In this section, we will consider four-colorings of triangulations of the torus. Most of the
known results concerning this section were obtained by Fisk [6–8]. We will follow his
notation hereafter.

3.1. An alternative approach to four-colorings

Fisk [6, 7] considered a definition of a four-coloring that allows us to borrow concepts and
results from algebraic topology. A (proper) four-coloring f of a triangulation T is a non-
degenerate simplicial map:

f : T −→ ∂�3, (3.1)

where ∂�3 is the surface of a tetrahedron (thus, it can also be considered as a triangulation of
the sphere S2).6 From algebraic topology [7], if T is the triangulation of an orientable closed
surface (e.g., a sphere or a torus), there is an integer-valued function deg(f ) determined up to a
sign by f . In any practical computation, we should choose orientations for the triangulation T
and the tetrahedron ∂�3. Then, given any triangle t of ∂�3 (i.e., a particular three-coloring of
a triangular face), we can compute the number p (resp. n) of triangles of T mapping to t which
have their orientation preserved (resp. reversed) by f . Then, the degree of the four-coloring
f is defined as

deg(f ) = p − n, (3.2)

6 A map f : T → ∂�3 is non-degenerate if the image of every triangle of T under f is a triangle of ∂�3.
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and it is independent of the choice of the triangle t. For instance, the three-coloring of any
triangulation has zero degree, as there are no vertices colored 4, so for t = 124 we have
p = n = 0. As we are interested in equivalence classes of four-colorings modulo global color
permutations, in practical computations it only makes sense to consider the absolute value of
the degree: i.e., |deg(f )|.

Tutte [21] proved a formula for the degree of a four-coloring modulo 2 (the parity of a
four-coloring) in terms of the degrees of all vertices colored with a specific color. We write
ρ(x) for the degree of a vertex x ∈ V . A vertex is even (resp. odd) if its degree is even (resp.
odd).

Lemma 3.1 (Tutte [21]). Given a triangulation T of a closed orientable surface, the degree of
a four-coloring f of T satisfies

deg(f ) ≡
∑

f (x)=a

ρ(x) (mod 2) (3.3)

for a = 1, 2, 3, 4.

Proof. By definition, the degree of a four-coloring is modulo 2 equal to the number N of
triangles of T mapping to a given triangle of ∂�3: deg(f ) ≡ p + n (mod 2) and N = p + n.
If we take a color a, which is a vertex of ∂�3, then there are three triangular faces of ∂�3

sharing this vertex a: i.e., t1, t2 and t3. For each of these triangles ti , there are Ni triangles of
T mapping to ti . Then,

deg(f ) ≡ 3 deg(f ) (mod 2)

≡ N1 + N2 + N3 (mod 2), (3.4)

which is equal to the number of triangles of T with a vertex colored a. This number can indeed
be written as the rhs of (3.3). �

Lemma 3.1 implies that any Eulerian triangulation, in particular, any triangulation
T (r, s, t), can only have four-colorings with even degree, as every vertex x ∈ V has even
degree (i.e., ρ(x) = 6 for any vertex x of T (r, s, t)).

A natural question is how many possible values the degree of a four-coloring f can take.
An answer for a restricted class of triangulations is given by the following proposition:

Proposition 3.2 (Fisk [6], Problem I.6.6 in [7]). Let T be a triangulation of a closed orientable
surface, and let f be a four-coloring of T. If T admits a three-coloring, then deg(f ) ≡ 0
(mod 6).

Proof. The idea is to mimic the proof of theorem 4 in [7]. If T has a three-coloring h, and f

is a four-coloring of T, then we can combine these two maps and give

h × f : T −→ �2 × ∂�3, (3.5)

where �2 × ∂�3 = T (6, 2, 2) (see figure 1). We have the following diagram:

T

∂Δ3 Δ2 × ∂Δ3

Δ2

f h× f

g

h

7
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where g is the projection of �2 × ∂�3 onto its second factor ∂�3. By commutativity,
deg(f ) = deg(h × f ) deg(g). As the degree of g is 6, then deg(f ) = 6 deg(h × f ) ≡ 0
(mod 6). �

In this geometric approach to four-colorings, it is useful to introduce the concept of a
Kempe region [7]. Suppose that D is a region of the triangulation T (i.e., the union of triangles
of T), and that the four-coloring f uses only two colors on the boundary ∂D of D. We define
a new coloring g of T that is equal to f on T \D, and equal to π(f ) on D, where π is the
permutation which interchanges the two colors not on ∂D. Fisk calls D a Kempe region of f ,
and ∂D a Kempe cycle. The coloring is not changed on ∂D itself. Indeed, inside a Kempe
region D we find one or more Kempe components of the two colors not on ∂D. So, the new
coloring is K-equivalent to f . Conversely, every K-change can be described as a change on
the region consisting of all triangles containing an edge affected by the K-change.

Finally it is worth noting that lemma 3.1 implies that the parity of a four-coloring (i.e.,
deg(f ) (mod 2)) is a Kempe invariant:

Corollary 3.3. Given a triangulation T of a closed orientable surface, then the parity of a
four-coloring of T is a Kempe invariant.

Proof. If we consider a K-change on a region D, we take a to be one of the colors on the
boundary ∂D (or one of the colors not on the Kempe component Tbc). Then, the parity given
by (3.3) is not affected by the K-change, and therefore, it is an invariant. �

Unfortunately, the parity is not useful for our purposes, as we are interested in 6-regular
triangulations of the torus T (r, s, t). Thus, all four-colorings have even parity. In addition, in
the class of three-colorable triangulations of any orientable surface, proposition 3.2 ensures
that all four-colorings have deg(f ) ≡ 0 (mod 6).

3.2. A new Kempe invariant for a class of triangulations

In this section, we shall consider a special class of triangulations in which every vertex is
of even degree. Such a triangulation is said to be even (or Eulerian). Observe that every
three-colorable triangulation is even.

Tutte’s lemma 3.1 implies that if we have a four-coloring f of a triangulation T and we
perform a Kempe change to obtain a new four-coloring g, then

deg(g) ≡ deg(f ) (mod 2). (3.6)

For even triangulations this result has no useful consequences, as all four-colorings have
even degree. However, for the restricted class of three-colorable triangulations of orientable
surfaces we can do better.

Theorem 3.4. Let T be a three-colorable triangulation of a closed orientable surface. If f

and g are two four-colorings of T related by a Kempe change on a region R, then

deg(g) ≡ deg(f ) (mod 12). (3.7)

Proof. We begin by noting that if T is three-colorable, then it is an even triangulation.
Proposition 3.2 ensures that deg(f ), deg(g) ≡ 0 (mod 6). As in the proof of proposition 3.2,
we can combine the three-color map h with both four-colorings to define the following maps:

F = h × f, (3.8a)

G = h × g, (3.8b)

8
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from T onto �2 × ∂�3 = T (6, 6, 2), where h is the three-coloring of T. Let us consider the
following commutative diagram:

∂Δ3 T ∂Δ3

Δ2 × ∂Δ3 Δ2 Δ2 × ∂Δ3

p2 p2

p1 p1

fg

G F

Since deg(f ) = deg(F ) deg(p2) = 6 deg(F ) and deg(g) = 6 deg(G), our claim is
equivalent to deg G ≡ deg F (mod 2).

For simplicity, let us suppose that there is a Kempe region R such that its boundary ∂R is
colored 3 and 4. Then, the Kempe change on R consists in swapping colors 1 and 2 on R. Let
us see in detail what happens after this K-change. Consider figure 1 for notation. Triangles in
figure 1 are labeled T1, . . . , T24. We say that a triangle t in T is of type i with respect to the
coloring f if it is mapped to Ti by the mapping F. Similarly, we consider types of triangles
under g.

A triangle of type T1 with positive (resp. negative) orientation is mapped on a triangle of
type T24 with negative (resp. positive) orientation after we swap colors 1 and 2. We represent
this correspondence as ±T1 ↔ ∓T24. In fact, this K-change induces a bijection from the set
of triangular faces of T (6, 2, 2) onto itself of the form

±T1 ↔ ∓T24 (3.9a)

±T1+k ↔ ∓T12+k, 1 � k � 11. (3.9b)

This correspondence can be written shortly as

±Tk ↔ ∓Tγ (k), (3.10)

where γ is an appropriate permutation. After the K-change, the number of triangles of a given
type outside R is not changed, so we have to count only the changes inside R. Let us introduce
some useful notation: the total number of triangles of a given type k ∈ {1, . . . , 24} inside a
region A of the triangulation T is denoted by N

(A)
k . Let P

(A)
k (resp. M

(A)
k ) denote the number

of triangles of type k inside region A with positive (resp. negative) orientation. Hence,

N
(A)
k = P

(A)
k + M

(A)
k , k = 1, 2, . . . , 24, A ⊆ T .

If we split the triangulation T into two regions R and T \R, we get

deg F = P
(T \R)

k − M
(T \R)

k + P
(R)
k − M

(R)
k , k = 1, 2, . . . , 24.

After the K-change we obtain a new four-coloring g. The composite coloring G is identical
to F outside R. The differences can only occur inside R. The degree of G is given by

deg G = P
(T \R)

k − M
(T \R)

k − P
(R)

γ (k) + M
(R)

γ (k), k = 1, 2, . . . , 24.

Let � deg = deg F − deg G. Then

� deg = P
(R)
k + P

(R)

γ (k) − (
M

(R)
k + M

(R)

γ (k)

)
, k = 1, 2, . . . , 24.

But this is equivalent to

� deg ≡ P
(R)
k + P

(R)

γ (k) + M
(R)
k + M

(R)

γ (k) (mod 2)

≡ N
(R)
k + N

(R)

γ (k) (mod 2), k = 1, 2, . . . , 24.

9
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In particular, we have that for k = 1, 5, 9

� deg ≡ N
(R)
1 + N

(R)
24 (mod 2)

� deg ≡ N
(R)

5 + N
(R)
16 (mod 2)

� deg ≡ N
(R)
9 + N

(R)
20 (mod 2).

Summing these three equations we arrive at the formula,

� deg ≡ N
(R)
1 + N

(R)
24 + N

(R)

5 + N
(R)
16 + N

(R)
9 + N

(R)
20 (mod 2)

≡ # of triangles inside R with no vertex colored 4 (mod 2)

≡ # of triangles inside R colored 123 (mod 2). (3.11)

Note that if we repeat this procedure with k = 3, 7, 11 we obtain a similar equation and
conclude that � deg has the same parity as the number of triangles inside R colored 124. On
the other hand, we cannot obtain a similar formula for the triangles colored 134 or 234.

Let us go back to equation (3.11). All vertices colored 1 inside R belong to the interior
of R (i.e., none of them lies on its boundary, as ∂R is colored 3, 4). In addition, because the
triangulation T is even, each interior vertex colored 1 belongs to an even number of triangular
faces, all of them belonging to R. Let us consider one of these interior vertices colored 1, say
x. If none of its neighbors is colored 4, x contributes ρ(x) to � deg in equation (3.11), which
is an even number. For any neighboring vertex of x colored 4, this contribution is reduced by
two. Thus, for each interior vertex colored 1, there is an even number of triangles belonging
to R and colored 123. This implies that � deg = deg F − deg G ≡ 0 (mod 2), and therefore

deg f − deg g = 6(deg F − deg G) ≡ 0 (mod 12),

as claimed. �

Theorem 3.4 implies that a four-coloring f with degree deg f ≡ 6 (mod 12) cannot
be K-equivalent to the three-coloring h, whose degree is zero. This proves the following
corollary:

Corollary 3.5. Let T be a three-colorable triangulation of the torus. Then κ(T , 4) > 1 if and
only if there exists a four-coloring f with deg(f ) ≡ 6 (mod 12).

Proof. Fisk’s theorem 2.8 together with theorem 3.4 implies the existence of a Kempe
equivalence class characterized by deg(g) ≡ 0 (mod 12). This class includes the three-
coloring. Thus, κ(T , 4) > 1 if and only if there is a four-coloring f with deg(f ) ≡ 6
(mod 12). �

By theorem 3.4, the ‘if’ part of corollary 3.5 holds on arbitrary closed orientable surfaces.
The question of the ergodicity of the WSK dynamics on triangulations T (3L, 3M) reduces

to the existence of four-colorings of degree ≡ 6 (mod 12). If there are no such four-colorings,
WSK dynamics is ergodic, while if such four-colorings exist, then WSK dynamics is non-
ergodic, and the corresponding Markov chain will not converge to the uniform measure over
C4(T ).

3.3. A complete proof of Fisk’s theorem for T (r ,s,t)

The proof of theorem 2.8 in [8] seems to be missing some minor details, as reported in
[15]. However, as far as the authors can see, Fisk’s proof is complete and correct apart
from these minor issues. Nevertheless, in this section we provide a self-contained proof of
Fisk’s result when restricted to the 6-regular triangulations of the torus treated in this paper.

10
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Figure 2. Non-singular edges around a vertex.

Another advantage of our proof is that it gives a closer insight into Kempe equivalence between
four-colorings of triangulations T (r, s, t).

Theorem 3.6. If the triangulation T (r, s, t) admits a three-coloring, then every four-coloring
of T, whose degree is divisible by 12, is K-equivalent to the three-coloring.

For the proof we shall consider the ‘non-singular structure’ of four-colorings and show
that we can eliminate the ‘non-singular’ part completely by applying K-changes and thus
arrive to the three-coloring. This will be done by a series of lemmas. But first we need some
definitions.

Let f be a four-coloring of a triangulation T. Let xy ∈ E(T ) and let xyz and xyw be
the two triangles of T containing the edge xy. We say that the edge xy is singular (for the
coloring f ) if f (z) = f (w), and is non-singular if f (z) �= f (w). Let N(f ) be the set of all
non-singular edges, and for any distinct colors i, j , let Nij = Nij (f ) be the set of non-singular
edges xy ∈ N(f ) for which {f (x), f (y)} = {i, j}. For a vertex x, let Nx

ij be the set of edges
in Nij that are incident with x.

From now on, we assume that T = T (r, s, t) is a fixed triangulation of the torus and
that f is a four-coloring of T. We also let i, j ∈ {1, . . . , 4} be the distinct colors used by the
four-coloring f .

Lemma 3.7. If x is a vertex of color f (x) = i, and Nx
ij �= ∅, then |Nx

ij | = 2. Therefore, each
Nij is a union of disjoint cycles in T. If two such cycles, C ⊆ Nij and C ′ ⊆ Nil(j �= l), cross
each other at the vertex x, then there is a third cycle C ′′ ⊆ Nik(k �= j, l) passing through x
and crossing both C and C ′ at x.

Proof. Let us consider the possible four-colorings around x. Up to symmetries (permutations
of the colors and the dihedral symmetries of the 6-cycle), there are precisely four possibilities
that are shown in figure 2. The non-singular edges are drawn by bold solid or broken lines,
and a brief inspection shows that the claims of the lemma hold. �

A four-coloring f of T is said to be non-singularly minimal (NS-minimal for short) if
for any two distinct colors i, j , the non-singular set Nij is either empty or forms a single
non-contractible cycle. The next lemma and its proof explain why such colorings are called
‘minimal’.

Lemma 3.8. Let f be a four-coloring of T. Then there exists an NS-minimal four-coloring f ′

of T that is K-equivalent with f and N(f ′) ⊆ N(f ).

Proof. Let f ′ be a four-coloring of T that is K-equivalent to f , such that N(f ′) ⊆ N(f ), and
f ′ has minimum number of non-singular edges subject to these requirements. Since f has the
stated conditions, f ′ exists.

11
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11 22 13 21 12 23 11

13 21 12 23 11 22 13

42 33 41

32 43 31 42

Figure 3. The triangulation T0 = �2 × ∂�3 ≈ T (6, 2, 2). The dashed line shows the sequence of
triangles (g × f )(γ ) (see the text).

Let us now consider an arbitrary pair of colors, say 1 and 2. If C ⊆ N12(f
′) is a

contractible cycle, let R be the disk region bounded by C. By exchanging colors 3 and
4 on R (which keeps us in the same K-class), all the change in non-singular edges is
that C becomes singular. (However, note that particular sets Nij may be changed.) This
contradicts the minimality of N(f ′). Therefore, every non-singular cycle in N12(f

′) is
non-contractible.

Suppose that N12(f
′) contains distinct cycles C,C ′. As proved above, C and C ′ are

non-contractible. By lemma 3.7, C and C ′ are disjoint, so they are homotopic and therefore
together bound a cylinder region R. As above, by exchanging colors 3 and 4 on R, we get a
contradiction to the minimality assumption. This completes the proof. �

As defined earlier, let T0 = �2 × ∂�3 ≈ T (6, 2, 2) be the 6-regular triangulation of the
torus shown in figure 3. Note that T0 admits a three-coloring and a non-singular four-coloring.
Its vertices can be labeled by pairs of colors, written as ij , where i ∈ {1, 2, 3, 4} is the color
of the non-singular four-coloring, and j ∈ {1, 2, 3} is its color under the three-coloring; see
figure 3. If the triangulation T has a three-coloring g and a four-coloring f , then we define a
simplicial map g × f : T → T0 by setting (g × f )(x) = f (x)g(x) ∈ V (T0) for every vertex
x of T. If γ is a closed curve on the torus T that does not pass through the vertices of T, then
γ can be described (up to homotopy) by specifying the sequence of triangles of T traversed
by it. This closed sequence of triangles, A1, A2, . . . , AN,A1, is uniquely determined if we
cancel out possible immediate backtracking, i.e., subsequences of the form A,B,A. The
mapping g × f then determines a closed sequence B1, B2, . . . , BN, B1 of triangles in T0,
where Bi = (g ×f )(Ai) for i = 1, . . . , N . This sequence will be denoted by (g ×f )(γ ) (see
figure 3). The main property of this correspondence is that Bi = Bi+1 if and only if the edge
common to Ai and Ai+1 is singular with respect to the four-coloring f of T, i.e. γ crosses a
singular edge of f when passing from Ai to Ai+1.

Lemma 3.9. Let T = T (r, s, t) be a three-colorable triangulation of the torus, and let f be
an NS-minimal four-coloring of T. If f is not the three-coloring of T, then all non-singular
cycles Nij (1 � i < j � 4) exist. Two such cycles Nij and Nkl({i, j} �= {k, l}) are homotopic
if and only if {i, j} ∩ {k, l} = ∅.

Proof. We shall use the notation introduced above. Since f is not the three-coloring
(which is unique, up to global permutations of colors), we may assume that N12 �= ∅.
Let γ be a simple closed curve in the torus that crosses Nij precisely once and is given

12
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by the sequence of triangles A1, . . . , AN,A1. Let us consider the corresponding sequence
γ ′ = (g × f )(γ ) = B1, B2, . . . , BN, B1 of triangles in T0.

Let Kij be the non-singular cycle in T0 passing through all vertices il and jl, l = 1, 2, 3.
Since γ crosses N12 precisely once, γ ′ crosses K12 exactly once. We may assume that it
crosses K12 through the edge e = 1122 as shown in figure 3.

For a cycle Kij , we define the algebraic crossing number with γ ′ by first counting the
number of consecutive triangles Bl, Bl+1 in γ ′ such that Bl is ‘on the left’ of Kij , while Bl+1

is ‘on the right’ of it, and then subtracting the number of such pairs, where Bl is ‘on the right’
and Bl+1 is ‘on the left’. (For the two ‘horizontal’ cycles K12 and K34 we replace ‘left’ by
‘bottom’ and ‘right’ by ‘top’. All of these directions, of course, refer to figure 3.) We denote
this number by algcr(γ ′,Kij ).

For an arbitrary edge set F ⊆ E(Kij ), we define algcr(γ ′, F ) in the same way,
except that we only consider consecutive triangles Bl, Bl+1 sharing the edges in F. Let
k = algcr(γ ′, {1142, 4213}). This number can be viewed as the ‘winding number’ around
the cylinder obtained from T0 by cutting along the cycle K12; cf figure 3. Using the fact
that γ ′ is contained in this cylinder except for its crossing of the edge 1122, it is easy to
see that algcr(γ ′,K13) = 3k + 1, algcr(γ ′,K24) = 3k + 1, algcr(γ ′,K14) = 3k + 2 and
algcr(γ ′,K23) = 3k + 2. Moreover, algcr(γ ′,K12) = algcr(γ ′,K34) = 1. In particular, none
of these numbers is zero (modulo 3).

Let us recall that Bi �= Bi+1 if and only if the edge common to Ai and Ai+1 is non-singular
with respect to f . Therefore, γ ′ crosses an edge of Kij precisely when γ crosses an edge in
Nij (f ). Therefore, algcr(γ ′,Kij ) = algcr(γ,Nij ) �= 0. This shows that none of the sets Nij

is empty.
If {i, j} ∩ {k, l} = ∅, the two cycles Nij and Nkl are disjoint. Since they are non-

contractible and the surface is the torus, they are homotopic to each other. On the other hand,
since algcr(γ,N13) = algcr(γ,N14) − 1, cycles N13 and N14 cannot be homotopic. Similarly,
by starting the above proof with other cycles instead of N12, we conclude that cycles Nij and
Nkl cannot be homotopic if {i, j} ∩ {k, l} �= ∅. �

Note that in the proof of lemma 3.9, we did not use any assumption on the degree of the
four-coloring f . On the other hand, in our last lemma, when arguing about the degree of a
four-coloring, we will not need the existence of the three-coloring.

Lemma 3.10. Let f be an NS-minimal four-coloring of T such that all non-singular cycles
Nij (f ) exist and such that two such cycles Nij and Nkl({i, j} �= {k, l}) are homotopic if and
only if {i, j} ∩ {k, l} = ∅. Then the degree of f is congruent to 2 modulo 4. In particular, it
is not divisible by 12.

Proof. Let us consider cycles N12 and N13. Since they are not homotopic, they cross at least
once, and this happens at vertices of color 1. By lemma 3.7, both these cycles are crossed by
N14 at each such crossing point. Let us fix an orientation on the torus T and let x ∈ V (T ) be a
vertex of color 1 at which N12, N13, N14 cross each other. If the local clockwise order around
x is N12, N13, N14, N12, N13, N14, then we say that x is a positive crossing point (of color 1),
and if the local clockwise order is N12, N14, N13, N12, N14, N13, then x is a negative crossing
point.

We claim that the difference of the number of positive minus the number of negative
crossing points of color 1 is equal (in absolute value) to the algebraic crossing number
algcr(N12, N13). This is a consequence of the fact that color 4 changes sides from the left to
the right side of N13, or vice versa, every time when the curve N13 passes through a crossing
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point of color 1 or through a crossing point of color 3 (thus crossing the cycle N34 which is
homotopic to N12). We leave the details to the reader.

Since the numbers of positive and negative crossing points of color 1 are also the same
for other pairs of non-singular cycles that involve color 1, we conclude that

|algcr(N12, N13)| = |algcr(N12, N14)| = |algcr(N13, N14)|. (3.12)

Let us fix two simple closed curves γ, ν on the torus T, where ν is the curve corresponding
to the cycle N12(f ), and γ crosses ν precisely once. Then every closed curve α on T is
homotopic to the curve which winds a times around ν, and then winds b times around γ ,
where a and b are integers. We say that α has homotopy type (a, b). The homotopy type of
N12 is clearly (1,0). Let (a, b) and (c, d) be the homotopy types of N13 and N14, respectively.
The algebraic crossing number between closed curves is a (free) homotopy invariant and can
be expressed as the determinant of the 2 × 2 matrix whose rows are the homotopy types of the
curves (see, e.g., [26]). In particular,

algcr(N12, N13) = ±det

(
1 0
a b

)
= ±b, (3.13)

algcr(N12, N14) = ±det

(
1 0
c d

)
= ±d, (3.14)

algcr(N13, N14) = ±det

(
a b

c d

)
= ±(ad − bc). (3.15)

By (3.12), all three algebraic crossing numbers in (3.13)–(3.15) are equal up to the sign, so
|b| = |d| = |ad − bc|. It follows that either |a − c| = 1 or |a + c| = 1. Here we have used the
fact that b �= 0, and this is true since N13 is not homotopic to N12. A particular consequence
of the above conclusion is that either a or c is even.

Suppose first that a is even. Since N13 is a simple curve, its homotopy type (a, b) satisfies
gcd(a, b) = 1 (cf [26]). Therefore, b and henceforth also d are odd.

The other case is when c is even. In that case, we derive the same conclusion as above.
From this it follows that the total number of crossing points of color 1 is odd. Of course, we
can repeat the same proof for crossing points of color 2 to conclude that their number is odd
as well.

We are ready for the second part of the proof, where we will relate the number of crossing
points and the degree of the coloring f . Let us traverse the cycle N12 and consider the (cyclic)
sequence of all crossing points of colors 1 and 2 as they appear on N12. We shall see that one
can determine the degree of f just from this sequence.

Let us recall that deg(f ) is equal to the difference between the number of triangles
colored 123, whose orientation on the surface is 123, minus the number of such triangles
whose orientation is 132. If t is such a triangle and its edge colored 12 is not in N12, then there
is another triangle colored 123 sharing that edge with t and having opposite orientation. The
contribution of all such triangles toward the degree of f thus cancels out. On the other hand,
each edge of N12 is contained in precisely one triangle colored 123. Consider two consecutive
edges xy and yz on N12. If y is not a crossing point with other non-singular curves, then one
of the two triangles colored 123 and incident with these edges is oriented positively, the other
one negatively, and so their contributions will cancel out. On the other hand, if y is a crossing
point, then they have the same orientation. If two consecutive crossing points on N12 are of
the same color, then the pair at one of these two crossing points is positively oriented, while
the pair at the other crossing point is negatively oriented, and hence they cancel out. This
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has the same effect as removing two consecutive 1’s or two consecutive 2’s from the cyclic
sequence of crossing points on N12. Therefore, we may assume that the sequence of crossing
points is alternating, 1212 . . . 12. The number of 1’s is an odd integer, say 2k + 1, as shown in
the first part of the proof. This implies that all triangles at crossing points have positive (or all
have negative) orientation. Therefore, deg(f ) = ±2(2k + 1) ≡ 2 (mod 4), which we were to
prove. �

Proof of theorem 3.6. Let f be a four-coloring of T = T (r, s, t). By lemma 3.8 there
is an NS-minimal coloring f ′ that is K-equivalent to f and has N(f ′) ⊆ N(f ). If f ′ is
not the three-coloring, then by lemma 3.9, all six non-singular curves Nij (f

′) exist and their
homotopy is as stated in the lemma. But then lemma 3.10 implies that deg(f ′) ≡ 2 (mod 4).
Since the K-equivalence preserves the value of the degree modulo 12 (cf theorem 3.4), this
yields a contradiction to the assumption that the degree of f is divisible by 12. �

4. Consequences for the triangulations T (3L,3L)

A simple corollary of proposition 3.2 and theorem 2.8 shows that all four-colorings of T (3, 3)

are K-equivalent:

Corollary 4.1. κ(T (3, 3), 4) = 1.

Proof. The smallest (in modulus) non-zero degree for a four-coloring of an even three-
colorable triangulation is 6 by proposition 3.2. But in order to have a four-coloring f with
such degree, we would need at least 6 × 4 = 24 triangular faces. However, the triangulation
T (3, 3) only has 32 × 2 = 18 such faces. Then, deg(f ) = 0 for all four-colorings of T (3, 3),
and theorem 2.8 implies that κ(T (3, 3), 4) = 1. �

A four-coloring f is said to be non-singular if all edges are non-singular with respect
to f . Fisk [8] showed that the triangulation T (r, s, t) has a non-singular four-coloring cns if
and only if r, s, t are all even. In this non-singular coloring, each horizontal row uses exactly
two colors. This also holds for all vertical and diagonal ‘straight-ahead cycles’. For the
triangulation T (3L, 3M), the non-singular coloring is given by

cns(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x, y ≡ 1 mod 2
2 if x ≡ 1 and y ≡ 0 mod 2
3 if x ≡ 0 and y ≡ 1 mod 2,

4 if x, y ≡ 0 mod 2.

1 � x � 3L, 1 � y � 3M (4.1)

Proposition 4.2. The triangulation T (3L, 3M) has a non-singular four-coloring cns if and
only if L = 2� and M = 2m are both even. If so, then |deg cns| = 18�m. In particular,
κ(T (6�, 6m), 4) � 2 if � and m are both odd.

Proof. Under the non-singular coloring, all triangles are mapped to ∂�3 with the same
orientation. Thus, |deg cns| = 1

4 (#triangles of T (3L, 3M)) = 18�m. If � and m are both odd,
the degree is ≡ 6 mod 12, and now corollary 3.5 applies. �

The next non-trivial result shows that κ(T (6, 6), 4) = 2; hence WSK dynamics is non-
ergodic on this triangulation.

Theorem 4.3. (with Alan Sokal) κ(T (6, 6), 4) = 2.
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Figure 4. Four-colorings of the triangulation T (6, 6). (a) Coloring cns (4.1) with |deg(cns)| = 18.
(b) Coloring fb obtained from cns by swapping colors 1, 2 on the bottom row. (c) Coloring fc

obtained from fb by swapping colors 3, 4 on the second row from the bottom. (d) Coloring fd

obtained from fb by swapping colors 3, 4 on the fourth row from the bottom. The coloring cns in
(a) has |deg(cns)| = 18; the colorings fi in (b)–(d) have |deg(fi )| = 6.

Proof. Proposition 4.2 shows that the non-singular four-coloring of T (6, 6) has deg(cns) ≡ 6
(mod 12) and that there are at least two Kempe equivalence classes for this triangulation. One
class C(0)

4 corresponds to all colorings whose degree is a multiple of 12. The other classes
contain colorings with degree ≡ 6 (mod 12).

The fact that the number of Kempe classes is exactly two can be derived as follows. Let
us first observe that the maximum degree of a four-coloring of the triangulation T (3L, 3L)

is �9L2/2�; therefore, for T (6, 6), this maximum degree is 18. Thus, we should focus on all
four-colorings f with |deg(f )| = 6, 18, and show that they form a unique Kempe equivalence
class.

There is a single four-coloring f with |deg(f )| = 18: the non-singular coloring cns

depicted in figure 4(a). Each row (horizontal, vertical or diagonal) contains exactly two colors,
and for any choice of colors a, b, the induced subgraph Tab contains three parallel connected
components, each of them being a cycle of length six. Then, the only non-trivial K-changes
correspond to swapping colors on one of these cycles (as swapping colors simultaneously on
two such cycles are equivalent to swapping colors on the third cycle and permute colors a, b

globally). If we choose colors 1, 2 and swap colors on the bottom row, we get the four-coloring
fb with degree |deg(fb)| = 6 depicted in figure 4(b). To obtain a new coloring we should
choose the other pair of colors 3, 4, as for any other choice (a, b) �= (1, 2) or (3, 4), the
induced subgraph Tab is connected, so we would not obtain a distinct coloring. Again, we
only need to consider one of the three horizontal cycles of the induced subgraph T34. Now
we have two different choices: the second or the fourth rows from the bottom. The resulting
colorings fc, fd are depicted respectively in figures 4(c) and (d). Both have |deg(fi)| = 6,
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and all the induced subgraphs Ta,b with (a, b) �= (1, 2) or (3, 4) are again connected. Thus,
all these colorings form a closed class C(1)

4 under K-changes, but we still need to prove that
there are no additional colorings f with |deg f | = 6.

To count the number of four-colorings f with |deg(f )| = 6 belonging to the class C(1)
4 , we

can fix the colors of the three vertices of a triangular face t. Then, all we can do is (for each of
the three directions: horizontal, vertical and diagonal) to swap colors on any non-empty subset
of the four cycles in the chosen direction not intersecting t. Since there are 15 non-empty
subsets, we have 15 × 3 = 45 colorings f with |deg(f )| = 6, and therefore,

∣∣C(1)
4

∣∣ = 46.
Finally, we used a computer program (written in PERL) that enumerates all possible four-

colorings on T (6, 6) and classify them according to |deg(f )|. It finds 305 192 proper four-
colorings with zero degree, 45 colorings with |deg(f )| = 6 and a single coloring with
|deg(f )| = 18. Therefore, C(1)

4 contains all colorings with |deg(f )| = 6, 18, C4(T (6, 6)) =
C(0)

4 ∪ C(1)
4 and κ(T (6, 6), 4) = 2. Indeed, the number of all these colorings is equal to

PT (6,6)(4)/4! = 305 238. �

Remark. The class C(0)
4 is grossly larger than C(1)

4 : to be more precise,
∣∣C(1)

4

∣∣/∣∣C(0)
4

∣∣ ≈
1.5 × 10−4.

Let us now state a simple lemma which is the basic key in the proof of the following
theorems.

Lemma 4.4.

(a) If there is a four-coloring f of the triangulation T (r, s) with deg(f ) ≡ 2 (mod 4), then
there exists a four-coloring g of T (3r, 3s) with deg(g) ≡ 6 (mod 12).

(b) If there is a four-coloring f of T (3r, s) or T (r, 3s) with deg(f ) ≡ 2 (mod 4), then there
exists a four-coloring g of T (3r, 3s) with deg(g) ≡ 6 (mod 12).

(c) If there is a four-coloring f of the triangulation T (3r, 3s) with deg(f ) ≡ 6 (mod 12), then
for any odd integers p, q, there exists a four-coloring g of the triangulation T (3rp, 3sq)

with deg(g) ≡ 6 (mod 12).

Proof.

(a) If f is a four-coloring of T (r, s), then we can obtain a four-coloring g of T (3r, 3s) by
extending f periodically three times in each direction. If deg(f ) = 2 + 4k, with k ∈ Z,
then

deg(g) = 9 deg(f ) = 18 + 36k ≡ 6 (mod 12).

(b) The same arguments as in (a) apply here; the only difference is that the coloring
of T (3r, 3s) is obtained from the coloring in T (3r, s) (resp. T (r, 3s)) by extending
periodically the former three times in the vertical (resp. horizontal) direction. If
deg(f ) = 2 + 4k, then the degree of the periodically extended coloring g is

deg(g) = 3 deg(f ) = 6 + 12k ≡ 6 (mod 12).

(c) If f is a four-coloring of T (3r, 3s) with deg(f ) ≡ 6 (mod 12), then we can obtain a
four-coloring g of T (3rp, 3rq) by extending f periodically p times in the horizontal
direction and q times in the vertical direction. If deg(f ) = 6 + 12k with k ∈ Z, the degree
of g is

deg(g) = pq deg(f ) = 6pq + 12pqk ≡ 6 (mod 12),

if both p and q are odd integers. �
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Figure 5. Notation used in the proof of theorem 4.5. Given a triangulation T (M, M) (here we
depict the case M = 6), we label each vertex using Cartesian coordinates (x, y) [1 � x, y � M].
The arrows (pointing north-west) show the counter-diagonals Dj with j = 1, . . . , M .

4.1. Main results for T (3L,3L)

Our main results for triangulations of the type T (3L, 3L) can be summarized as follows:

Theorem 4.5. For any triangulation T (3L, 3L) with L � 2 there exists a four-coloring f

with deg(f ) ≡ 6 (mod 12). Hence, κ(T (3L, 3L), 4) > 1. In other words, the WSK dynamics
for four-colorings on T (3L, 3L) is non-ergodic.

Proof. The rest of this section is devoted to the proof of theorem 4.5. We will show that
T (3L, 3L) admits a four-coloring f with deg(f ) ≡ 6 (mod 12). Then, corollary 3.5 implies
that κ(T (3L, 3L), 4) > 1 for any L � 2. The construction of f will depend on the value of
L modulo 4, and we will split the proof in four cases, L = 4k − 2, 4k − 1, 4k, or L = 4k + 1,
with k ∈ N.

The basic strategy for all these proofs is to explicitly construct the four-coloring with the
desired degree. With this aim, it is useful to fix orientations of both triangulations T (3L, 3L)

and ∂�3 in order to compute the degree of a given four-coloring (without ambiguity). We
orient T (3L, 3L) and ∂�3 in such a way that the boundaries of all triangular faces are always
followed clockwise. The contribution of a triangular face t of T (3L, 3L) to the degree is +1
(resp. −1) if the coloring is 123 (resp. 132) if we move clockwise around the boundary of t. In
our figures, those faces with orientation preserved (resp. reversed) by f are depicted in light
(resp. dark) gray.

The easiest case is when L = 4k − 2. In this case, T (3L, 3L) admits the non-singular
four-coloring, whose degree is congruent to 6 modulo 12 by proposition 4.2.

Other cases need a more elaborate construction. The common strategy is to devise an
algorithm to obtain the desired four-coloring, and the main ingredient is to use the counter-
diagonals of the triangulations: these counter-diagonals are orthogonal to the inclined edges
of the triangulation when embedded in a square grid. They will be denoted as Dj with
1 � j � 3L. In figure 5 we show the triangulation T (6, 6), and its six counter-diagonals Dj .
As we have embedded the triangulation into a square grid, we will use Cartesian coordinates
(x, y), 1 � x, y � 3L, for labeling the vertices.

We will describe an algorithm that provides the desired coloring f . It is useful to monitor
the degree of the coloring as we construct it. In particular, at a given step of the algorithm,
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Figure 6. The four-coloring of T (9, 9) after step 1 in the proof of the case L = 4k − 1.

the four-coloring f will be defined on some region R of T = T (3L, 3L) (i.e., the union of
all properly colored triangular faces of T). What we mean by the degree of f at this stage is
the contribution to the degree of f of the triangles belonging to R: deg(f |R). Again, we will
count only those triangular faces of T colored 123. Note that at the end of the algorithm, when
R = T , this partial degree will coincide with the standard one, deg(f ) = deg(f |T ).

Case 2: L = 4k − 1
Let us consider the triangulation T = T (12k − 3, 12k − 3) with k ∈ N (the case k = 1 will
illustrate our ideas in figures 6 and 7). Our goal is to obtain a four-coloring f of T with degree
deg(f ) ≡ 6 (mod 12). The algorithm to obtain such a coloring consists of four steps:

Step 1. We start by coloring the counter-diagonal D1: we color 1 the vertices with x-coordinates
1 � x � 6k − 1; the other 6k − 2 vertices are colored 2.

On D2, we color 3 those 6k − 1 vertices with x-coordinates 3k + 1 � x � 9k − 1. The
other vertices on D2 are colored 4. The vertices on D(12k − 3) are colored 3 or 4 in such a
way that the resulting coloring is proper (for each vertex, there is a unique choice).

On D3 and D(12k − 4), we color all vertices 1 or 2 (there is a unique choice for each
vertex). The resulting coloring is depicted in figure 6. The partial degree of f is deg f |R = 4.

Step 2. For k > 1, we find that there are 12k − 8 counter-diagonals to be colored and we need
to sequentially color all of them but four. This can be achieved by performing the following
procedure: suppose that we have already colored counter-diagonals Dj and D(12k − j − 1)

(j � 3) using colors 1 and 2. Then, we color D(j + 1) and D(12k − j − 2) using colors 3 and
4, and D(j + 2) and D(12k − j − 3) using colors 1 and 2. As in step 1, for each vertex there
is a unique choice.

This procedure is repeated 3(k−1) times, so we add 12(k−1) counter-diagonals, and there
are only four counter-diagonals not yet colored. Indeed, the last colored counter-diagonals
D(6k − 3) and D(6k + 2) have colors 1 and 2, the same as it was at the end of step 1.

Each of these 3(k − 1) steps adds 4 to the degree of the coloring. Thus, the partial degree
of f is deg f |R = 4 + 12(k − 1).

Step 3. There remain only four counter-diagonals to be colored: D(6k − 2), D(6k − 1), D(6k)

and D(6k + 1). On D(6k − 2), the vertices (3k − 1, 3k − 1) and (9k − 2, 9k − 3) only admit
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Figure 7. Four-colorings of the triangulation T (9, 9) after steps 3 (a) and 4 (b) in the proof of the
case L = 4k − 1.

a single color (which is 3 for one of them and 4 for the other one). The rest of the vertices on
D(6k − 2) are colored 1 and 2 (again, there is a unique choice for each vertex).

We now color 3 or 4 all the vertices on D(6k + 1) (the choice is again unique for each
vertex). The resulting coloring is depicted in figure 7(a). The contribution to the partial degree
of the new triangles is zero; the partial degree of f is given by deg f |R = 4 + 12(k − 1).

Step 4. On D(6k − 1), there are two pairs of nearby vertices which only admit a single color
(which is 3 for one pair and 4 for the other one). These vertices are located at (3k − 1, 3k),

(3k, 3k − 1), (9k − 1, 9k − 3) and (9k − 2, 9k − 2). The other vertices on D(6k − 1) can
be colored 3 or 4 (with only one choice for each of them). The increment of the degree after
coloring these vertices is −2; thus, deg f |R = 2 + 12(k − 1).

Finally, all vertices on D(6k) are colored 1 and 2, and again the choice is unique for each
vertex. The final coloring is depicted in figure 7(b). The increment in the degree is 4, and
therefore, the degree of the four-coloring f is

deg f = 6 + 12(k − 1) ≡ 6 (mod 12). (4.2)

This coloring f of T (12k − 3, 12k − 3) satisfies the two needed properties: it is a proper
coloring and its degree is congruent to 6 modulo 12.

Case 3: L = 4k

Let us consider the triangulation T = T (12k, 12k) with k ∈ N (we will illustrate the main
steps with the case k = 1). Our algorithm consists of five steps:

Step 1. On the counter-diagonal D1 we color 1 the 6k consecutive vertices with x-coordinates
1 � x � 6k. The other 6k vertices on D1 are colored 2.

On D2, we color 3 the 6k consecutive vertices with x-coordinates 3k + 2 � x � 9k + 1.
The other vertices on D2 are colored 4. The vertices on D(12k) are colored 3 or
4 in such a way that the resulting coloring is proper (for each vertex, the choice is
unique).
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Figure 8. The four-coloring of T (12, 12) after step 3 in the case L = 4k.

We color all vertices on D3 and D(12k − 1) using colors 1 and 2. We then color D4 and
D(12k − 2) using colors 3 and 4. Again the condition that f is proper implies that for each
vertex the choice is unique. The partial degree of f is deg f |R = 4.

Step 2. For k > 1, we find that there are 12k − 7 counter-diagonals to be colored, and we need
to sequentially color all of them but five. This can be achieved by performing the following
procedure: suppose that we have already colored counter-diagonals Dj and D(12k − j − 2)

(j � 4) using colors 3 and 4. Then, we color D(j + 1) and D(12k − j + 1) using 1 and 2, and
then, we color D(j +2) and D(12k−j) using 3 and 4. Again, for each vertex we have only one
choice. This step is repeated 3(k − 1) times: we add 12(k − 1) counter-diagonals, and there
are only five counter-diagonals not yet colored. Indeed, the last colored counter-diagonals use
colors 3 and 4, as it was at the end of step 1.

Each of these 3(k − 1) steps adds 4 to the degree of the coloring. Thus, the partial degree
of the coloring is deg f |R = 4 + 12(k − 1).

Step 3. The last colored counter-diagonals are D(6k − 2) and D(6k + 4).
On D(6k − 1), the vertices at (6k, 12k − 1) and (12k, 6k − 1) only admit one color: one

of them should have color 1 and the other one 2. The rest of the vertices on D(6k − 1) are
colored 3 or 4 (again, there is a unique choice for each vertex).

We color 1 or 2 all vertices on D(6k + 3); again there is a unique choice for each vertex.
As shown in figure 8, the contribution to the degree of these new triangles is 4; thus, the partial
degree of f is deg f |R = 8 + 12(k − 1).

Step 4. On D(6k) the vertices at (1, 6k − 1), (12k, 6k), (6k + 1, 12k − 1) and (6k, 12k) only
admit a unique color choice: either 1 or 2. The first two vertices should be colored alike, while
the last two vertices take the other color. We color the other vertices on D(6k) with 1 and 2 in
such a way that those vertices with x-coordinate satisfying 1 � x < 6k take the same color as
the vertex at (1, 6k − 1); the rest are colored the same as the vertex at (6k, 12k).
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Figure 9. The four-coloring of T (12, 12) after step 5 in the case L = 4k.

All vertices on D(6k + 1) are colored 3 or 4. For all of them, except for those at (1, 6k)

and (6k + 1, 12k), there is unique possibility of doing so. We color 4 the vertex at (1, 6k)

and color 3 the vertex at (6k + 1, 12k). The increment of the partial degree is −2, thus
deg f |R = 6 + 12(k − 1).

Step 5. Finally, on D(6k + 2), there are two vertices which only admit a single color chosen
among 1 and 2. For odd k these vertices are (2, 6k) and (6k + 2, 12k), while for even k, these
vertices are (1, 6k + 1) and (6k + 1, 1). The other vertices on D(6k + 2) can be colored 3 and
4 (uniquely). The resulting coloring is depicted in figure 9. In this step, the increment in the
degree is zero. Therefore, the degree of the obtained four-coloring is

deg f = 6 + 12(k − 1) ≡ 6 (mod 12).

This coloring f of T (12k, 12k) is proper and its degree is congruent to 6 modulo 12, as
claimed.

Case 4: L = 4k + 1
Let us consider the triangulation T = T (12k + 3, 12k + 3) with k ∈ N (we will illustrate

the main steps with the case k = 1).

Step 1. On D1 we color 1 the 6k + 2 consecutive vertices with x-coordinate 1 � x � 6k + 2.
The other 6k + 1 vertices on D1 are colored 2.

On D2 we color 3 the 6k + 1 consecutive vertices with x-coordinate 3k + 3 � x � 9k + 3.
The other vertices on D2 are colored 4. We color 3 or 4 all vertices on D(12k + 3); the choice
is unique for each vertex.

We color 1 or 2 all vertices on D3, D5, D(12k + 2) and D(12k). And we color 3 or 4 all
vertices on D4 and D(12k + 1). In all cases, the choice is unique for each vertex.

The resulting (partial) coloring is depicted in figure 10. The partial degree of this coloring
is deg f |R = 8.

Step 2. For k > 1, we find that there are 12k − 6 counter-diagonals to be colored and in this
step we will sequentially color all of them but six. This can be achieved by performing the
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Figure 10. The four-coloring of T (15, 15) after step 1 in the case L = 4k + 1.

following procedure: suppose that we have already colored Dj and D(12k − j + 5) (j � 5)

using colors 1 and 2. Then, we color D(j + 1) and D(12k − j + 4) using colors 3 and 4, and
D(j + 2) and D(12k − j + 3) using colors 1 and 2. Again, for each vertex the choice is unique.

This step is repeated 3(k − 1) times; thus, we add 12(k − 1) counter-diagonals, and there
are only six counter-diagonals not yet colored. Indeed, the last colored counter-diagonals use
colors 1 and 2, as was at the end of step 1.

Each of these 3(k − 1) steps adds 4 to the degree of the coloring. Thus, the partial degree
is deg f |R = 8 + 12(k − 1).

Step 3. The last colored counter-diagonals are D(6k−1) and D(6k +6). On D(6k) the vertices
at (3k, 3k) and (9k + 2, 9k + 1) only admit a single color: either 3 or 4. We color the rest of
the vertices of D(6k) with colors 1 and 2 (again, uniquely). On D(6k + 5) we perform the
same procedure; here the vertices with only one color choice are located at (3k + 3, 3k) and
(9k + 4, 9k + 4). The contribution to the degree of the newly colored triangles is zero; the
partial degree is still deg f |R = 8 + 12(k − 1).

On D(6k + 1) there are two pairs of nearby vertices which only admit one color among
3 and 4. One pair is (3k + 1, 3k) and (3k, 3k + 1), and the other one is (9k + 3, 9k + 1) and
(9k + 2, 9k + 2). We color the other vertices on D(6k + 1) by colors 3 and 4 while using the
following rule: those with x-coordinate satisfying 3k + 1 < x < 9k + 2 are colored 3 (resp.
4) if k is odd (resp. even). At the end, there are 6k + 2 and 6k + 1 vertices colored alike on
D(6k + 1).

On D(6k + 4) we also find two pairs of vertices which only admit one color among 3 and
4: one pair is (3k + 3, 3k + 1) and (3k + 2, 3k + 2), and the other one is (9k + 4, 9k + 3) and
(9k + 3, 9k + 4). The other vertices on D(6k + 4) are then colored 3 and 4 with the help of
the following rules: (1) those with x-coordinate satisfying 3k + 3 < x < 9k + 3 are colored
3 (resp. 4) if k is odd (resp. even); (2) the number of vertices colored 3 is the same as on
D(6k + 1). This second rule is used to determine the color of the vertex at (3k + 1, 3k + 3).
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Figure 11. The four-coloring of T (15, 15) after step 4 in the case L = 4k + 1.

The contribution to the partial degree of these new triangles is −4; thus, the partial degree
of f is deg f |R = 4 + 12(k − 1).

Step 4. On D(6k + 2) there are two vertices located at (3k, 3k + 2) and (9k + 2, 9k + 3) whose
colors are fixed to either 1 or 2. Color with the same color as (9k + 2, 9k + 3) the two vertices
(3k + 1, 3k + 1) and (9k + 3, 9k + 2). At the end, there are 6k + 4 vertices having one color,
and 6k + 1 having the other one.

On D(6k + 3) there are two vertices whose colors are fixed to either 3 or 4. There are
also four additional vertices whose colors are fixed to either 1 or 2. These six vertices are
located at (3k + 2, 3k + 1), (3k + 1, 3k + 2), (3k, 3k + 3), (9k + 4, 9k + 2), (9k + 3, 9k + 3) and
(9k + 2, 9k + 4). The other vertices on D(6k + 3) are colored 3 or 4 (the choice for each vertex
is unique).

In figure 11 the final coloring f is depicted. The increment in the partial degree is 2.
Therefore,

deg f = 6 + 12(k − 1) ≡ 6 (mod 12).

The coloring f of T (12k + 3, 12k + 3) is proper and its degree is congruent to 6 modulo 12,
as claimed. This completes the proof. �

5. Further results for T (3L, 3M )

In the previous section, we have proven that T (3L, 3L) has at least one coloring with degree
≡ 6 (mod 12) for any L � 2, and hence κ(T (3L, 3L), 4) > 1. This result can be used for
some other triangulations with aspect ratio different from 1:

Theorem 5.1. The number of Kempe equivalence classes κ(T , 4) is at least two for any
triangulation T (3Lp, 3Lq) for L � 2 and any odd integers p, q.

Proof. Theorem 4.5 shows that there is a coloring f of T (3L, 3L) for L � 2 with deg(f ) ≡ 6
(mod 12). Then, lemma 4.4(c) proves the claimed result. �
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Figure 12. Subset of the triangulation T (3, L) used in the proof of proposition 5.2.

In order to obtain more general results, it is convenient to prove the following simple
proposition.

Proposition 5.2. The degree of any four-coloring of any triangulation T (L, 3) or T (3, L)

with L � 1 is zero.

Proof. Suppose we compute the degree of a given four-coloring c of the triangulation T (3, L)

by counting those triangular faces colored 123. We can focus on those sites colored 3. Let us
suppose the vertex x is colored 3. Because the four-coloring c is proper, none of the neighbors
of x can be colored 3. And because the triangulation has width 3, the two neighbors along the
horizontal axis are also adjacent to each other, so they have different colors, say 1 and 2. This
situation is depicted in figure 12. There are only nine different four-colorings of the above
graph, and all of them contribute zero to the degree. Therefore, the contribution of all vertices
colored 3 to the degree is zero, and the claimed result is proven. �

The following lemma shows how to build a four-coloring of the triangulation T (L,M +3)

by ‘gluing’ four-colorings of the triangulations T (L,M) and T (L, 3) that have the same
coloring on the top row. One key point is that the degree is an invariant under this operation.

Lemma 5.3. Let us suppose that c is a four-coloring of a triangulation T (L,M) with degree d,
and that the coloring on the top row is ctop. Let us further suppose there exists a four-coloring
c′ of the triangulation T (L, 3) with the same coloring on the top row c′

top = ctop. Then, there
exists a four-coloring of the triangulation T (L,M + 3) with degree d.

Proof. Because both T (L,M) and T (L, 3) are triangulations of a torus with the same width
L, and the corresponding colorings c and c′ both have the same top-row coloring ctop, we
can obtain a four-coloring c′′ of the triangulation T (L,M + 3) by ‘gluing’ together these two
colorings. This is indeed a proper coloring of T (L,M + 3), and its degree can be computed
as deg(c′′) = deg(c) + deg(c′) = deg(c) = d, since deg(c′) = 0 by proposition 5.2. �

This lemma gives us the opportunity to devise an inductive proof that there is a four-
coloring with degree 6 (mod 12) for any triangulation T (3L, 3M) with M � L. The base
case L = M is already verified by theorem 4.5. If we can find a proper four-coloring of the
triangulation T (3L, 3) with a top-row coloring equal to the top-row coloring of the coloring
obtained in the proof of theorem 4.5, then the above lemma can be used to prove the inductive
step. The main issue is, therefore, to prove the existence of such coloring for T (3L, 3).

Theorem 5.4. For any triangulation T (3L, 3M) with any L � 3 and M � L, there exists
a four-coloring f with deg(f ) ≡ 6 (mod 12). Consequently, the WSK dynamics for four-
colorings of T (3L, 3M) is non-ergodic.
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Proof. The proof is by induction on M. The base case M = L � 3 is proven by
theorem 4.5. Now suppose that there exist such colorings for all triangulations T (3L, 3M ′)
with L � M ′ � M , and we wish to prove that such configuration exists also for M. The main
idea is to prove the existence of a proper four-coloring of the triangulation T (3L, 3) such that
its top-row coloring coincides with that obtained in the proof of the corresponding case in
theorem 4.5.

To simplify the notation we will denote by ci the sequence of colors in the row i of
T (3L, 3) and by c0 the coloring of the top row of T (3L, 3L) obtained in the proof of
theorem 4.5. Of course, our goal is to have c0 = c3.

To describe a sequence of colors, we will use the following notation: [a1a2 · · · as]t

will be the sequence of length st in which a1a2 · · · as is repeated t times. For example,
12[34]32 = 123 434 342.

Our basic strategy is, as in theorem 4.5, to explicitly construct four-colorings of T (3L, 3)

with L � 3. The construction of such a coloring will depend on the value of L modulo 4, and
we will split the proof in four cases, L = 4k − 2, 4k − 1, 4k, or L = 4k + 1, with k ∈ N.

The case L = 4k − 2 was the easiest one in the proof of theorem 4.5; however, in this
case it is the most elaborate. Thus, we will start the proof by considering the easiest cases,
and delay the most complex one to the end.

Case 1: L = 4k − 1.
Let t = � 3k−2

2 �. The top-row coloring obtained from the proof of case 2 in theorem 4.5
can be written as

c0 = c3 = [1423]t1231[3241]t3,

when k is even. Then we define c1 and c2 as

c2 = 3[1423]t142[1324]t2

c1 = 23[1423]t14[2413]t4.

If k is odd, then we have

c0 = c3 = [1423]t14214241[3241]t3

c2 = 3[1423]t1423124[1324]t2 = 3[1423]t+1124[1324]t2

c1 = 23[1423]t14231[3241]t34 = 23[1423]t+11[3241]t34.

It is easy to verify that this gives a proper four-coloring of T (3L, 3). By proposition 5.2, it
has zero degree. This completes the proof of this case.

Case 2: L = 4k.
As for the previous case, let t = ⌊

3k−2
2

⌋
. The top-row coloring c3 = c0 is obtained from

the proof of Case 3 in theorem 4.5. When k is even, the sought four-coloring is defined as
follows:

c0 = c3 = [1423]t1431341[3241]t3

c2 = 3[1423]t124132[4132]t4 = 3[1423]t12[4132]t+14

c1 = 4[2314]t312413[2413]t2 = 4[2314]t31[2413]t+12.

If k is odd, then we have

c0 = c3 = [1423]t14234231241[3241]t3 = [1423]t+14231241[3241]t3

c2 = 3[1423]t1423423132[4132]t4 = 3[1423]t+1423132[4132]t4

c1 = 4[2314]t2342312413[2413]t2 = 4[2314]t234231[2413]t+12.
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Again, it is easy to verify that this gives a proper four-coloring of T (3L, 3), and by
proposition 5.2, it has zero degree. This completes the proof of this case.

Case 3: L = 4k + 1.
Let t = ⌊

3k−2
2

⌋
. The top-row coloring c3 = c0 is obtained from the proof of case 4 in

theorem 4.5. When k is even, the sought four-coloring is defined as follows:

c0 = c3 = [1423]t1421423421[3241]t3

c2 = 3[1423]t14214213[2413]t42

c1 = 2[3142]t314214213[2413]t4 = 2[3142]t+114213[2413]t4.

If k is odd, then we have

c0 = c3 = [1423]t+11231431241[3241]t3

c2 = [1423]t+1312312413[2413]t42 = [1423]t+131231[2413]t+142

c1 = [2314]t+12312312413[2413]t2 = [2314]t+12312312413[2413]t+12.

Again, it is easy to verify that this gives a proper four-coloring of T (3L, 3), and by
proposition 5.2, it has zero degree. This completes the proof of this case.

Case 4: L = 4k − 2.
We cannot use the results of the proof of theorem 4.5, as the resulting four-coloring for

T (3L, 3L) is characterized by the fact that any row (horizontal, vertical or inclined) is bi-
colored. Thus, we cannot obtain a four-coloring of T (12k − 6, 3) with a bi-colored horizontal
row.

We first need to obtain a proper four-coloring f of T (12k − 6, 12k − 6) with deg(f ) ≡ 6
(mod 12), and such as there is a proper four-coloring of T (12k − 6, 3) compatible with the
coloring of one of the horizontal rows of f . We obtain such a coloring f by a constructive
proof similar to those explained in the proof of theorem 4.5. The notation we use is the same
as in theorem 4.5.

Let us consider the triangulation T = T (12k − 6, 12k − 6) with the integer k � 2 (the
case k = 2 will illustrate our ideas). Our goal is to obtain a four-coloring f of T with degree
deg(f ) ≡ 6 (mod 12). The algorithm to obtain such a coloring consists of four steps:

Step 1. We start by coloring counter-diagonal D1: we color 1 the vertices with x-coordinates
1 � x � 6k − 3; the other 6k − 3 vertices are colored 2.

On D2, we color 3 those 6k − 3 vertices with x-coordinates 3k � x � 9k − 4. The other
vertices on D2 are colored 4. The vertices on D(12k − 6) are colored 3 or 4 in such a way that
the resulting coloring is proper (for each vertex, there is a unique choice).

On D3 and D(12k − 7), we color all vertices 1 or 2; on D4 and D(12k − 8), we color
all vertices 3 and 4, and finally, on D5 and D(12k − 9), we color all vertices 1 and 2. In
every case, there is a unique color choice for each vertex. The resulting coloring is depicted in
figure 13. The partial degree of f is deg f |R = 8.

Step 2. For k > 2, we find that there are 12k − 15 counter-diagonals to be colored and we
need to sequentially color all of them but nine. (Note that this is why this algorithm does not
work for k = 1.) This can be achieved by performing the following procedure: suppose that
we have already colored counter-diagonals Dj and D(12k − j − 4) (j � 5) using colors 1
and 2. Then, we color D(j + 1) and D(12k − j − 5) using colors 3 and 4, and D(j + 2) and
D(12k − j − 6) using colors 1 and 2. As in step 1, for each vertex there is a unique choice.
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Figure 13. The four-coloring of T (18, 18) after step 1 in the case L = 4k − 2.

This procedure is repeated 3(k−2) times, so we add 12(k−2) counter-diagonals, and there
are only nine counter-diagonals not yet colored. Indeed, the last colored counter-diagonals
D(6k − 7) and D(6k + 3) have colors 1 and 2, the same as it was at the end of step 1.

Each of these 3(k − 2) steps adds 4 to the degree of the coloring. Thus, the partial degree
of f is deg f |R = 8 + 12(k − 2).

Step 3. On D(6k − 6), the vertices (3k − 3, 3k − 3) and (9k − 6, 9k − 6) only admit a single
color (which is 3 for one of them and 4 for the other one). The rest of the vertices on D(6k−6)

are colored 1 and 2 (again, there is a unique choice for each vertex).
On D(6k + 2), there are two vertices: (3k + 1, 3k + 1) and (9k − 2, 9k − 2) admitting

a single color (again 3 or 4). The other vertices on D(6k + 2) are colored 1 or 2 (again, the
choice for each vertex is unique).

On D(6k − 5) there are four vertices which admit a single color ∈ {3, 4}: vertices
(3k − 2, 3k − 3) and (3k − 3, 3k − 2) should be colored c1, while (9k − 5, 9k − 6) and
(9k −6, 9k −5) should be colored c2 �= c1. The other vertices satisfying 3k −1 � x � 9k −4
are colored c2, and the rest of the vertices are colored c1.

Finally, on D(6k + 1), we also find another four vertices admitting a single color chosen
from the set {3, 4}: vertices (3k + 1, 3k) and (3k, 3k + 1) should be colored c1, while
(9k − 2, 9k − 3) and (9k − 3, 9k − 2) should be colored c2 �= c1. The other vertices
satisfying 3k + 2 � x � 9k − 4 are colored c2, and the rest of the vertices are colored c1.

The contribution to the partial degree of the new triangles is −4; the partial degree of f

is given by deg f |R = 4 + 12(k − 2).

Step 4. There are only five counter-diagonals to be colored. All vertices on D(6k − 4) are
colored 1 or 2 using the following simple rule: the vertex (x, y) is colored 1 (resp. 2) if the
vertex (x, y − 1) is colored 4 (resp. 3). In particular, those vertices with 3k − 1 � x � 9k − 5
are colored alike.
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Figure 14. The four-coloring of T (18, 18) after step 4 in the case L = 4k − 2.

On D(6k) we find two vertices admitting a single color in the set {1, 2}: (3k−1, 3k−1) and
(9k−2, 9k−4) taking, respectively, colors c1 and c2. The vertices satisfying 3k � x � 9k−4
are colored c1, and the others are colored c2.

On D(6k − 3) we find two vertices (3k − 1, 3k − 2) and (9k − 4, 9k − 5) that admit a
single color from the set {3, 4}. The other vertices are colored 1 and 2 (there is a unique choice
for each vertex).

On D(6k−2) there are four vertices admitting a single color from the set {3, 4}: the vertices
(3k, 3k − 2) and (3k − 1, 3k − 1) are colored c1, while (9k − 3, 9k − 5) and (9k − 4, 9k − 4)

are colored c2 �= c1. Those vertices satisfying 3k + 1 � x � 9k − 2 are colored c2, and the
rest are colored c1.

The last counter-diagonal D(6k − 1) contains seven vertices that admit a single color:
(3k + 1, 3k −2), (3k, 3k −1), (3k −1, 3k), (9k −1, 9k −6), (9k −2, 9k −5), (9k −3, 9k −4)

and (9k − 4, 9k − 3). The other vertices are colored 3 and 4 (there is a unique choice for each
vertex).

The resulting coloring is depicted in figure 14. The contribution to the partial degree
of the new triangles is 2; the partial degree of f is given by deg f |R = 6 + 12(k − 2) ≡ 6
(mod 12).

The above argument proves the base case of our induction. Now we have to find a
four-coloring of the triangulation T (12k − 6, 3) with k � 2 such that it has the same top-row
coloring c3 as f (see figure 14). We proceed as for the previous cases: let t = � 3k−6

2 �; the
four-coloring we need is defined as follows for k even:

c0 = c3 = [1423]t+11241243241241[3241]t3

c2 = 3[1423]t+112412432413[2413]t42 = 3[1423]t+11241243[2413]t+142

c1 = [2314]t+12312412432413[2413]t4 = [2314]t+1231241243[2413]t+14.
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If k is odd, then we have

c0 = c3 = [1423]t+114213213413213[2413]t+1

c2 = [3142]t+1314213213413[2413]t+142 = [3142]t+213213413[2413]t+142

c1 = [2314]t+12314213213413[2413]t+14 = [2314]t+2213213413[2413]t+14.

Again, it is easy to verify that this gives a proper four-coloring of T (3L, 3), and by
proposition 5.2, it has zero degree. This completes the proof of the theorem. �

Theorems 4.5 and 5.4 imply that WSK is non-ergodic on any triangulation T (3L, 3M)

with 3 � L � M . Proposition 5.2 together with Fisk’s theorem implies that WSK is ergodic
on any triangulation T (3, 3L). The triangulations T (6, 3L) are special in the sense that WSK
is ergodic depending on the value of L. In particular, WSK is not ergodic for any T (6, 6p)

with odd p, because of theorem 4.5 (or theorem 4.3) and lemma 4.4.
By direct computer enumeration of the 299 146 792 proper four-colorings of T (6, 9), we

have checked that all of them have zero degree. We have also checked with a computer that we
can transform any of these colorings into the three-coloring by a finite number of K-changes.
Therefore, we have obtained a computer-assisted proof of the following theorem:

Proposition 5.5. κ(T (6, 9), 4) = 1.

Remark. Fisk’s theorem 2.8 can be used to prove the ergodicity of the WSK on T (6, 9)

directly from the fact that all colorings have zero degree.

6. Summary and open problems

We have considered the question of the ergodicity of the Wang–Swendsen–Kotecký dynamics
for the zero-temperature 4-state Potts antiferromagnet on triangulations T (3L, 3M) of the
torus. This dynamics is equivalent (for the zero-temperature case only) to that of the Kempe
chains studied in Combinatorics. We have obtained two main results:

(1) For the wider family of the even triangulations of the torus (which contains the
triangulations T (3L, 3M) as a proper subset), we find that the degree of a four-coloring
modulo 12 is invariant under Kempe changes.

(2) For any triangulation T (3L, 3M) of the torus with 3 � L � M , there are at least two
Kempe equivalence classes for 4 colors. In other words, the WSK dynamics with 4 colors
on these triangulations is non-ergodic. For L = 2, we can only show that this dynamics
is non-ergodic for M = 2p with odd p.

In addition to their intrinsic mathematical interest, these results have a great practical
importance in statistical mechanics. The triangular-lattice 4-state Potts antiferromagnet is
believed to have a zero temperature critical point [10, and references therein]. But we cannot
study the critical properties of this model using WSK dynamics because of the non-ergodicity
of the algorithm. (This also holds for the single-site Metropolis dynamics, as it corresponds
to a particular subset of moves of the WSK dynamics.) Indeed, one can simulate the 4-state
Potts antiferromagnet at zero temperature using the WSK algorithm on planar graphs (e.g.,
a triangular grid with free boundary conditions), but surface effects cannot be eliminated,
and one has to go to much larger lattice sizes to attain high-precision results. It is therefore
important to devise a new Monte Carlo algorithm for this model which is ergodic at zero
temperature.

There are other open problems related to the ergodicity of the Kempe dynamics. The case
of four-colors on triangulations of the torus is rather special, as we can make use of concepts
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borrowed from algebraic topology. However, these techniques cannot be applied to the cases
of q = 5, 6 colors, and the ergodicity of the corresponding WSK dynamics is still an open
problem.

Finally, let us mention that at zero temperature, the 4-state Potts model on the triangular
lattice is essentially equivalent to the 3-state Potts model on the kagomé lattice. We have
found that the WSK dynamics for this model also fails to be ergodic on most kagomé lattices
when embedded on a torus. The details will be published elsewhere.
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